FULL-PACK TRIACS

Glass-passivated 8 ampere triacs in SOT-186 envelopes, which feature an electrically isolated seating plane. They are intended for use in applications requiring high bidirectional transient and blocking voltage capability. These triacs feature a high surge current capability and a range of gate current sensitivities between 5 and 50 mA. Typical applications include AC power control circuits such as motor, industrial lighting, industrial and domestic heating control and static switching systems.

QUICK REFERENCE DATA

		BT137	F-500	600	1 800	
Repetitive peak off-state voltage	V_{DRM}	max.	500	600	800	, V
R.M.S. on-state current	IT(RMS)	max.		8		Α
Non-repetitive peak on-state current	^I TSM	max.		55		Α

MECHANICAL DATA

Fig. 1 SOT-186

blue binder, tab 10

Dimensions in mm

Net mass: 2 a.

The seating plane is electrically isolated from all terminals.

Accessories supplied on request (see data sheets Mounting instructions for F-pack devices and Accessories for SOT-186 envelopes).

PHILIPS

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages (in either direction)

	Voltages (in either direction)							
	Voltages (IIV citation direction)		BT137F-500		600 800			
-	Non-repetitive peak off-state voltage 1 ($t \le 10 \text{ ms}$)	V _{DSM}	max.	500*	600*	800	٧	
	Repetitive peak off-state voltage ($\delta \le 0.01$) †	v_{DRM}	max.	500	600	800	V	
	Crest working off-state voltage	V_{DWM}	max.	400	400	400	٧	
	Currents (in either direction)				500* 600* 800 500 600 800			
	R.M.S. on-state current (conduction angle 360 up to $T_h = 71$ °C	^{)O}) T(RMS)	max.		8		Α	
	Repetitive peak on-state current	ITRM	max.		55		Α	
	Non-repetitive peak on-state current; $T_j = 120$ °C prior to surge;						•	
	t = 20 ms; full sine-wave	^I TSM	max.				Α	
	I ² t for fusing (t = 10 ms)	l² t	max.		15		A ² s	
	Rate of rise of on-state current after triggering with I _G = 200 mA to I _T = 12 A; dI _G /dt = 0.2 A/µs	dl _T /dt	max.		20		A/μs	
	Gate to terminal 1	•••						
	POWER DISSIPATION							
	Average power dissipation (averaged over any 20 ms period)	P _{G(AV)}	max.		0.5		w	
	Peak power dissipation	P _{GM}	max.		5		W	
	Temperatures							
	Storage temperature	T _{stg}		-40 te	+125		оC	
	Operating junction temperature full-cycle operation half-cycle operation	T _j T _j	max. max.				oC oC	
	ISOLATION							
-	From all three terminals to external heatsink (peak) **	V _(isol) M	min.		1500		V	
	Capacitance from T ₂ to external heatsink	C _(isol)	typ.		12		pF	

 $[\]rightarrow$ † For BT137F-500D/600D use R_(G-T₁) = 1k Ω .

^{*} Although not recommended, off-state voltages up to 800 V may be applied without damage, but the triac may switch into the on-state. The rate of rise of on-state current should not exceed 6 A/µs.

^{**} Measured with relative humidity <65% under clean and dust-free conditions.

THERMAL RESISTANCE

1. Heatsink mounted with clip (see mounting instructions)

Thermal resistance from junction to external heatsink				
With heatsink compound	R _{th j-h}	=	4.5	K/W
Without heatsink compound	R+h i-h	=	6.5	K/W

2. Free-air operation

The quoted values of $R_{th\ j-a}$ should be used only when no leads of other dissipating components run to the same tie-point.

Thermal resistance from junction to ambient in free air: mounted on a printed-circuit board at any lead length Rth i-a

 $R_{th j-a} = 55 K/W$

Fig.2 Components of thermal resistance.

BT137F SERIES

CHARACTERISTICS ($T_j = 25$ °C unless otherwise stated)

Polarities, positive or negative, are identified with respect to T_1 .

	Voltages and currents (in either direction)								
	On-state voltage (measured under pulse condit	ions to p	preve	ent exce	ssive dissipa	tion)			
	I _T = 10 A				٧ _T	<	1.65	٧	
	Rate of rise of off-state voltage that will not tr	igger							
	any device; T _j = 120 °C; gate open circuit								
	BT137F series				dV _D /dt	<	100	V/μs	
	BT137F series G BT137F series F				dVD/dt	< <	200 50	V/μs	
	BT137F series E				dV _D /dt dV _D /dt	typ.	50 50	V/μs V/μs	
	BT137F -500D/600D ($R_{(G-T_1)} = 1k\Omega$)				dVD/dt dVD/dt	typ.	5	V/μs	
_	Rate of change of commutating voltage that w	ill not			a • D, a •	.,		دم, ۰	
	trigger any device whendl _{com} /dt = 3.6 A/								
	T(RMS) = 8 A; T _h = 54 °C; gate open circuit; V _D = V _{DWMmax}								
	BT137F series		_	•••••	dV _{com} /dt	tyr.	10	V/μs	
	BT137F series G				dV _{com} /dt	<	10	V/µs	
	BT137F series F				dV _{com} /dt	typ.	10	V/μs	
	Off-state current								
	$V_D = V_{DWMmax}$; $T_j = 120 {}^{\circ}C$				l _D	<	0.5	mΑ	
	Gate voltage that will trigger all devices				v_{GT}	>	1.5	٧	
	Gate voltage that will not trigger any device								
	$V_D = V_{DWMmax}$; $T_i = 120 {}^{\circ}C$;								
	T ₂ and G positive or negative				V_{GD}	<	250	mV	
	Gate current that will trigger all devices (IGT);	G to T	1						
	Holding current (I _H)			T ₂ +	T ₂ +	T ₂ -	T2-		
	riolang carrent (IH)			G+	G-	G-	G+		
	Latching current (I_L); $V_D = 12 V$]			
		^I GT	>	35	35	35	70	mA	
	BT137F series	I _H	<	20	20	20	20	mΑ	
		٦	<	30	45	30	45	mΑ	
		IGT	>	50	50	50	100	mA	
	BT137F series G	IH	<	40	40	40	40	mA	
		ιį"	<	45	60	45	60	mΑ	
				25	25	25	1 70		
	BT137F series F	IGT IH	>	25 20	25 20	25 20	70 20	mA mA	
	or for screar	'H II	<	30	45	30	45	mΑ	
					 	-	1		
	BT137F series E	GT	>	10	10	10	25	mΑ	
	BIT37F series E	¹H I∟	<	20 25	20 35	20 25	20 35	mA mA	
		'L			35	25	35		
	DT1075 5000 (0000	IGT	>	5	5	5	10	mΑ	
-	BT137F-500D/600D	ļΗ	<	15	15	15	15	mA	
		<u> </u>	<	15	20	15	20	mA	

MOUNTING INSTRUCTIONS

- The triac may be soldered directly into the circuit, but the maximum permissible temperature of the soldering iron or bath is 275 °C; it must not be in contact with the joint for more than 5 seconds. Soldered joints must be at least 4.7 mm from the seal.
- The leads should not be bent less than 2.4 mm from the seal, and should be supported during bending. The leads can be bent, twisted or straightened by 90° maximum. The minimum bending radius is 1 mm.
- 3. Mounting by means of a spring clip is the best mounting method because it offers good thermal contact under the crystal area and slightly lower R_{th j-h} values than screw mounting. However, if a screw is used, it should be M3 cross-recess pan-head. Care should be taken to avoid damage to the plastic body.
- 4. For good thermal contact heatsink compound should be used between seating plane and heatsink. Values of R_{th j-h} given for mounting with heatsink compound refer to the use of a metallic-oxide loaded compound. Ordinary silicone grease is not recommended.
- 5. Rivet mounting is not recommended.
- 6. The heatsink must have a flatness in the mounting area of 0.02 mm maximum per 10 mm. Mounting holes must be deburred.

FULL-WAVE CONDUCTION (with heatsink compound)

Fig.3 The right-hand part shows the interrelationship between the power (derived from the left-hand part) and the maximum permissible temperatures.

$$\alpha_2$$
 α_1
 α_1
 α_2
 $\alpha_1 = \alpha_2$: conduction angle per half cycle

OPERATING NOTES

Dissipation and heatsink considerations:

a. The method of using Figs.3 and 4 is as follows:

Starting with the required current on the ${}^{\dagger}T(AV)$ or ${}^{\dagger}T(RMS)$ axis, trace upwards to meet the appropriate form factor or conduction angle curve. Trace horizontally and upwards from the appropriate value on the T_{amb} scale. The intersection determines the R_{th} mb a. The heatsink thermal resistance value (R_{th} h-a) can now be calculated from:

 $R_{th\ h-a} = R_{th\ mb-a} - R_{th\ mb-h}$

b. Any measurement of heatsink temperature should be made immediately adjacent to the device.

Fig.4 The right-hand part shows the interrelationship between the power (derived from the left-hand part) and the maximum permissible temperatures.

 $\alpha = \alpha_1 = \alpha_2$: conduction angle per half cycle

OVERLOAD OPERATION

Fig.5 Maximum permissible duration of steady overload (provided that T_h does not exceed 120 °C during and after overload) expressed as a percentage of the steady state r.m.s. rated current. For high r.m.s. overload currents precautions should be taken so that the temperature of the terminals does not exceed 125 °C. During these overload conditions the triac may lose control. Therefore the overload should be terminated by a separate protection device.

Fig.6 Maximum permissible non-repetitive r.m.s. on-state current based on sinusoidal currents (f = 50 Hz); $T_j = 120$ °C prior to surge. The triac may temporarily lose control following the surge.

Fig.7 On-state voltage drop (V_T) versus on-state current (I_T) .

Fig.8 Typical commutation dV/dt for BT137F series versus T_j . The triac should commutate when the dV/dt is below the value on the appropriate curve for pre-commutation dT/dt.

Fig.9 Limit commutation dV/dt for BT137F series G versus T_j . The triac should commutate when the dV/dt is below the value on the appropriate curve for pre-commutation dI_T/dt .

Fig. 10 Typical commutation dV/dt for BT137F series F versus T_j . The triac should commutate when the dV/dt is below the value on the appropriate curve for pre-commutation dl $_{T}$ /dt.

Fig.11 Minimum gate voltage that will trigger all devices; all conditions.

Fig.12 Normalised gate current that will trigger all devices; all conditions.

Fig.13 Transient thermal impedance, --- with heatsink compound; —— without heatsink compound.

June 1988

Philips Components Ltd., Mullard House, Torrington Place, London, WC1E 7HD. Tel: 01-580 6633 Telex: 264341 Fax: 01-636 0394 M88-1367/CP

PHILIPS